Part Number Hot Search : 
S1011 16000 PR2003 00MHZ 48TFD 1630C 2718BK2 HE891A
Product Description
Full Text Search
 

To Download MJW16010A-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  npn silicon power transistors 1 kv switchmode  series these transistors are designed for highvoltage, highspeed, power switching in inductive circuits where fall time is critical. they are particularly suited for lineoperated switchmode applications. typical applications: ? switching regulators ? inverters ? solenoids ? relay drivers ? motor controls ? deflection circuits features: ? collectoremitter voltage e v cev = 1000 vdc ? fast turnoff times ? 50 ns inductive fall time e 100  c (typ) ? 90 ns inductive crossover time e 100  c (typ) ? 900 ns inductive storage time e 100  c (typ) ? 100  c performance specified for: reversebiased soa with inductive load switching times with inductive loads saturation voltages leakage currents ? extended fbsoa rating using ultrafast rectifiers ? extremely high rbsoa capability preferred devices are on semiconductor recommended choices for future use and best overall value. on semiconductor  ? semiconductor components industries, llc, 2001 april, 2001 rev. 6 1 publication order number: mjw16010a/d power transistors 15 amperes 500 volts 125 and 175 watts mjw16010a *on semiconductor preferred device * case 340k01 to247ae
mjw16010a http://onsemi.com 2 ????????????????????????????????? ????????????????????????????????? maximum ratings ??????????????????? ??????????????????? rating ?????? ?????? symbol ??????? ??????? value ???? ???? unit ??????????????????? ??????????????????? collectoremitter voltage ?????? ?????? v ceo ??????? ??????? 500 ???? ???? vdc ??????????????????? ??????????????????? collectoremitter voltage ?????? ?????? v cev ??????? ??????? 1000 ???? ???? vdc ??????????????????? ??????????????????? emitterbase voltage ?????? ?????? v eb ??????? ??????? 6 ???? ???? vdc ??????????????????? ? ????????????????? ? ??????????????????? collector currente continuous e peak (1) ?????? ? ???? ? ?????? i c i cm ??????? ? ????? ? ??????? 15 20 ???? ? ?? ? ???? adc ??????????????????? ? ????????????????? ? ??????????????????? base current e continuous e peak (1) ?????? ? ???? ? ?????? i b i bm ??????? ? ????? ? ??????? 10 15 ???? ? ?? ? ???? adc ??????????????????? ? ????????????????? ? ? ????????????????? ? ??????????????????? total power dissipation @ t c = 25  c @ t c = 100  c derate above t c = 25  c ?????? ? ???? ? ? ???? ? ?????? p d ??????? ? ????? ? ? ????? ? ??????? 135 54 1.09 ???? ? ?? ? ? ?? ? ???? watts w/  c ??????????????????? ? ????????????????? ? ??????????????????? operating and storage junction temperature range ?????? ? ???? ? ?????? t j , t stg ??????? ? ????? ? ??????? 55 to 150 ???? ? ?? ? ???? i c ????????????????????????????????? ????????????????????????????????? thermal characteristics ??????????????????? ??????????????????? characteristic ?????? ?????? symbol ??????? ??????? max ???? ???? unit ??????????????????? ??????????????????? thermal resistance, junction to case ?????? ?????? r q jc ??????? ??????? 0.92 ???? ????  c/w ??????????????????? ? ????????????????? ? ??????????????????? lead temperature for soldering purposes: 1/8 from case for 5 seconds ?????? ? ???? ? ?????? t l ??????? ? ????? ? ??????? 275 ???? ? ?? ? ????  c (1) pulse test: pulse width = 5 ms, duty cycle  10%.
mjw16010a http://onsemi.com 3 ????????????????????????????????? ????????????????????????????????? electrical characteristics (t c = 25  c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? symbol ???? ???? min ??? ??? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics (1) ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (table 1) (i c = 100 ma, i b = 0) ????? ? ??? ? ????? v ceo(sus) ???? ? ?? ? ???? 500 ??? ? ? ? ??? e ???? ? ?? ? ???? e ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current (v cev = 1000 vdc, v be(off) = 1.5 vdc) (v cev = 1000 vdc, v be(off) = 1.5 vdc, t c = 100  c) ????? ? ??? ? ????? i cev ???? ? ?? ? ???? e e ??? ? ? ? ??? 0.003 0.020 ???? ? ?? ? ???? 0.15 1.0 ??? ? ? ? ??? madc ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current (v ce = 1000 vdc, r be = 50 w , t c = 100  c) ????? ? ??? ? ????? i cer ???? ? ?? ? ???? e ??? ? ? ? ??? 0.020 ???? ? ?? ? ???? 1.0 ??? ? ? ? ??? madc ??????????????????? ??????????????????? emitter cutoff current (v eb = 6 vdc, i c = 0) ????? ????? i ebo ???? ???? e ??? ??? 0.005 ???? ???? 0.15 ??? ??? madc ????????????????????????????????? ????????????????????????????????? second breakdown ??????????????????? ??????????????????? second breakdown collector current with base forward biased ????? ????? i s/b ??????????? ??????????? see figure 14a or 14b ??????????????????? ??????????????????? clamped inductive soa with base reverse biased ????? ????? rbsoa ??????????? ??????????? see figure 15 ????????????????????????????????? ????????????????????????????????? on characteristics (1) ??????????????????? ? ????????????????? ? ? ????????????????? ? ??????????????????? collectoremitter saturation voltage (i c = 5 adc, i b = 1 adc) (i c = 10 adc, i b = 2 adc) (i c = 10 adc, i b = 2 adc, t c = 100  c) ????? ? ??? ? ? ??? ? ????? v ce(sat) ???? ? ?? ? ? ?? ? ???? e e e ??? ? ? ? ? ? ? ??? 0.25 0.45 0.60 ???? ? ?? ? ? ?? ? ???? 0.7 1 1.5 ??? ? ? ? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ? ????????????????? ? ??????????????????? baseemitter saturation voltage (i c = 10 adc, i b = 2 adc) (i c = 10 adc, i b = 2 adc, t c = 100  c) ????? ? ??? ? ? ??? ? ????? v be(sat) ???? ? ?? ? ? ?? ? ???? e e ??? ? ? ? ? ? ? ??? 1.2 1.2 ???? ? ?? ? ? ?? ? ???? 1.5 1.5 ??? ? ? ? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? dc current gain (i c = 15 adc, v ce = 5 vdc) ????? ? ??? ? ????? h fe ???? ? ?? ? ???? 5 ??? ? ? ? ??? 8 ???? ? ?? ? ???? e ??? ? ? ? ??? e ????????????????????????????????? dynamic characteristics ??????????????????? ? ????????????????? ? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f test = 1 khz) ????? ? ??? ? ????? c ob ???? ? ?? ? ???? e ??? ? ? ? ??? e ???? ? ?? ? ???? 400 ??? ? ? ? ??? pf ????????????????????????????????? ????????????????????????????????? switching characteristics ????????????????????????????????? ????????????????????????????????? inductive load (table 1) ?????? ?????? storage time ???????? ???????? ??????? ??????? ????? ????? t sv ???? ???? e ??? ??? 900 ???? ???? 2000 ??? ??? ns ?????? ?????? fall time ???????? ???????? (i =10adc ??????? ??????? (t j = 100  c) ????? ????? t fi ???? ???? e ??? ??? 50 ???? ???? 250 ??? ??? ?????? ?????? crossover time ???????? ???????? (i c = 10 adc, i b1 = 1.3 adc, ??????? ??????? ( j ) ????? ????? t c ???? ???? e ??? ??? 90 ???? ???? 300 ??? ??? ?????? ?????? storage time ???????? ???????? i b1 = 1 . 3 adc , v be(off) = 5 vdc, v ce( k) = 400 vdc) ??????? ??????? ????? ????? t sv ???? ???? e ??? ??? 1100 ???? ???? e ??? ??? ?????? ?????? fall time ???????? ???????? v ce(pk) = 400 vdc ) ??????? ??????? (t j = 150  c) ????? ????? t fi ???? ???? e ??? ??? 70 ???? ???? e ??? ??? ?????? ?????? crossover time ???????? ???????? ??????? ??????? ( j ) ????? ????? t c ???? ???? e ??? ??? 120 ???? ???? e ??? ??? ????????????????????????????????? ????????????????????????????????? resistive load (table 2) ?????? ?????? delay time ???????? ???????? ??????? ??????? ????? ????? t d ???? ???? e ??? ??? 25 ???? ???? 100 ??? ??? ns ?????? ?????? rise time ???????? ???????? ( i c = 10 adc, ??????? ??????? (i b2 = 2.6 adc, ????? ????? t r ???? ???? e ??? ??? 325 ???? ???? 600 ??? ??? ?????? ?????? storage time ???????? ???????? (i c = 10 adc , v cc = 250 vdc, i b =13adc ??????? ??????? (i b2 2 . 6 adc , r b2 = 1.6 w ) ????? ????? t s ???? ???? e ??? ??? 1300 ???? ???? 3000 ??? ??? ?????? ?????? fall time ???????? ???????? i b1 = 1.3 adc, pw = 30 m s, ??????? ??????? ????? ????? t f ???? ???? e ??? ??? 175 ???? ???? 400 ??? ??? ?????? ?????? storage time ???????? ???????? pw = 30 m s , duty cycle  2%) ??????? ??????? (v 5 vdc) ????? ????? t s ???? ???? e ??? ??? 700 ???? ???? e ??? ??? ?????? ?????? fall time ???????? ???????? ??????? ??????? (v be(off) = 5 vdc) ????? ????? t f ???? ???? e ??? ??? 80 ???? ???? e ??? ??? (1) pulse test: pw = 300 m s, duty cycle  2%.
mjw16010a http://onsemi.com 4 v ce , collector-emitter voltage (volts) c, capacitance (pf) v be , base-emitter voltage (volts) v ce , collector-emitter voltage (volts) 0.15 i c , collector current (amps) 0.2 1 1.5 0.5 10 i b , base current (amps) 5 2 1 0.5 0.2 0.1 0.15 i c /i b = 10 t j = 25 c 0.2 figure 1. dc current gain i c , collector current (amps) 3 0.2 0.3 0.5 1 2 5 10 20 30 10 7 figure 2. collectoremitter saturation region 0.15 i c , collector current (amps) 0.05 0.3 1 2 0.5 0.3 50 h fe , dc current gain 5 v ce = 5 v 3 5 10 15 figure 3. collectoremitter saturation region 5 0.5 0.01 0.02 0.05 0.2 0.5 10 25 0.1 figure 4. baseemitter saturation region figure 5. capacitance 5 3 1 10 k 1 v r , reverse voltage (volts) 10 10 2 k 100 850 20 15 a i c = 1 a t c = 25 c c ib 5 a t j = 100 c -55 c 25 c 20 2 3 1 215 0.1 0.2 0.1 i c /i b = 5 t j = 25 c i c /i b = 10 t j = 100 c 0.5 1 0.3 0.2 i c /i b = 10 t j = 25 c i c /i b = 10 t j = 100 c 5 k 1 k 3 k 50 100 200 300 500 0.3 0.5 2 5 20 30 50 500 300 0.3 3 10 10 a c ob typical static characteristics
mjw16010a http://onsemi.com 5 1500 1.5 5000 t c , crossover time (ns) t fi , collector current fall time (ns) i c , collector current (amps) figure 6. storage time figure 7. storage time , storage time (ns) t sv t fi , collector current fall time (ns) t c , crossover time (ns) i c , collector current (amps) 23 57 15 5000 3000 2000 1000 500 100 , storage time (ns) t sv 1.5 200 1000 i c , collector current (amps) 1000 500 200 100 50 10 1.5 20 i c , collector current (amps) i c , collector current (amps) 1500 1000 500 300 200 15 100 i c , collector current (amps) figure 8. collector current fall time figure 9. collector current fall time v be(off) = 0 v 5 v i c /i b1 = 5, t c = 75 c, v ce(pk) = 400 v i c /i b1 = 10, t c = 75 c, v ce(pk) = 400 v 0.07 300 0.05 10 2 3 5 7 15 3000 2000 1000 500 100 1.5 200 700 300 0.05 10 300 23 57 15 10 500 200 100 50 10 1.5 20 300 23 57 15 10 20 50 23 57 15 10 1.5 1000 500 300 200 15 100 20 50 23 57 15 10 2 v v be(off) = 0 v 5 v 2 v v be(off) = 0 v 5 v 2 v v be(off) = 0 v 5 v 2 v v be(off) = 0 v 5 v 2 v v be(off) = 0 v 5 v 2 v typical inductive switching characteristics
mjw16010a http://onsemi.com 6 +15 150 w 100 w 100 m f mtp8p10 mpf930 mpf930 mur105 mje210 150 w 500 m f v off 50 w +10 mtp12n10 mtp8p10 r b1 r b2 a 1 m f 1 m f drive circuit *tektronix am503 * p6302 or equivalent scope e tektronix 7403 or equivalent t 1  l coil (i cpk ) v cc note: adjust v off to obtain desired v be(off) at point a. t 1 adjusted to obtain i c(pk) t 1 +v -v 0 v a *i b *i c l t.u.t . 1n4246gp v clamp v cc i c(pk) v ce(pk) v ce i b i c i b1 i b2 v ceo(sus) l = 10 mh r b2 = v cc = 20 volts i c(pk) = 100 ma inductive switching l = 200 m h r b2 = 0 v cc = 20 volts r b1 selected for desired i b1 rbsoa l = 200 m h r b2 = 0 v cc = 20 volts r b1 selected for desired i b1 table 1. inductive load switching i b2 , reverse base current (amps) figure 12. inductive switching measurements figure 13. peak reverse base current v be(off) , reverse base voltage (volts) 0 10 8 7 6 i b1 = 2 a 01 2 3 5 i c = 10 a t c = 25 c t fi t rv t, time i c 90% i b1 i c(pk) v ce(pk) 90% v ce(pk) 90% i c(pk) 10% v ce(pk) 10% i c(pk) 2% i c i b t sv t ti t c v ce 9 4 3 5 2 1 4 1 a
mjw16010a http://onsemi.com 7 t d and t r t s and t f h.p. 214 or equiv. p.g. 50 r b = 8.5 w *i b *i c t.u.t . r l v cc v in 0 v 11 v t r 15 ns *tektronix am503 * p6302 or equivalent v cc 250 vdc r l 25 w i c 10 a i b 1.3 a +15 150 w 100 w 100 m f mtp8p10 mpf930 mpf930 mur105 mje210 150 w 500 m f v off 50 w +10 v mtp12n10 mtp8p10 r b1 r b2 a 1 m f 1 m f t.u.t . *i c *i b a r l v cc v (off) adjusted to give specified off drive v cc 250 v i c 10 a i b1 1.3 a i b2 per spec r b1 11.5 w r b2 per spec r l 25 w table 2. resistive load switching
mjw16010a http://onsemi.com 8 30 0.03 10 5 1 10 0.5 0.2 0.1 0.05 100 1000 3 20 0.3 figure 14. maximum rated forward biased safe operating area 1 v ce , collector-emitter voltage (volts) bonding wire limit thermal limit second breakdown limit region ii expanded fbsoa using mur8100 ultra-fast rectifier, see figure 17 t c = 25 c dc 20 v ce , collector-emitter voltage (volts) 0 1000 16 12 8 4 0 200 400 figure 15. maximum reverse biased safe operating area i c /i b1 4 t j 100 c power derating factor (%) 100 0 t c , case temperature ( c) 0 40 200 80 60 40 20 80 120 160 figure 16. power derating 600 800 v be(off) = 0 v v be(off) = 5 v second breakdown derating thermal derating i c , collector current (amps) i c , collector current (amps) 100 ns ii 10 m s 1ms guaranteed operating area information
mjw16010a http://onsemi.com 9 figure 17. switching safe operating area +15 150 w 100 m f mtp8p10 mpf930 mpf930 mur105 mje210 150 w 500 m f v off 50 w +10 mtp12n10 r b1 r b2 1 m f 1 m f 100 w mtp8p10 mur105 mur1100 t.u.t . mur8100 v ce (1000 v max) 10 m f 10 mh note: test circuit for ultrafast fbsoa note: r b2 = 0 and v off =  5 volts t, time (ms) 1 0.01 0.01 0.7 0.2 0.1 0.05 0.02 r(t), effective transient thermal 0.05 1 2 5 10 20 50 100 200 500 r q jc (t) = r(t) r q jc r q jc = 1 or 0.92 cw t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 d = 0.5 0.2 0.03 0.02 single pulse 0.1 0.1 0.5 0.2 resistance (normalized) 1000 figure 18. thermal response 0.5 0.3 0.07 0.03 0.03 0.3 3 30 300 0.02
mjw16010a http://onsemi.com 10 safe operating area information forward bias there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figures 14a and 14b is based on t c = 25  c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c 25  c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figures 14a and 14b may be found at any case temperature by using the appropriate curve on figure 16. t j(pk) may be calculated from the data in figure 18. at high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. reverse bias for inductive loads, high voltage and high current must be sustained simultaneously during turnoff, in most cases, with the basetoemitter junction reverse biased. under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. this can be accomplished by several means such as active clamping, rc snubbing, load line shaping, etc. the safe level for these devices is specified as reverse biased safe operating area and represents the voltagecurrent condition allowable during reverse biased turnoff. this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. figure 15 gives the rbsoa characteristics. switchmode design considerations 1. fbsoa e allowable dc power dissipation in bipolar power transistors decreases dramatically with increasing collectoremitter voltage. a transistor which safely dissipates 100 watts at 10 volts will typically dissipate less than 10 watts at its rated v ceo(sus) . from a power handling point of view, current and voltage are not interchangeable (see application note an875). 2. turnon e safe turnon load line excursions are bounded by pulsed fbsoa curves. the 10 m s curve applies for resistive loads, most capacitive loads, and inductive loads that are clamped by standard or fast recovery rectifiers. similarly, the 100 ns curve applies to inductive loads which are clamped by ultrafast recovery rectifiers, and are valid for turnon crossover times less than 100 ns (see application note an952). at voltages above 75% of v ceo(sus) , it is essential to provide the transistor with an adequate amount of base drive very rapidly at turnon. more specifically, safe operation according to the curves is dependent upon base current rise time being less than collector current rise time. as a general rule, a base drive compliance voltage in excess of 10 volts is required to meet this condition (see application note an875). 3. turnoff e a bipolar transistor's ability to withstand turnoff stress is dependent upon its forward base drive. gross overdrive violates the rbsoa curve and risks transistor failure. for this reason, circuits which use fixed base drive are often more likely to fail at light loads due to heavy overdrive (see application note an875). 4. operation above v ceo(sus) e when bipolars are operated above collectoremitter breakdown, base drive is crucial. a rapid application of adequate forward base current is needed for safe turnon, as is a stiff negative bias needed for safe turnoff. any hiccup in the basedrive circuitry that even momentarily violates either of these conditions will likely cause the transistor to fail. therefore, it is important to design the driver so that its output is negative in the absence of anything but a clean crisp input signal (see application note an952). 5. rbsoa e reverse biased safe operating area has a first order dependency on circuit configuration and drive parameters. the rbsoa curves in this data sheet are valid only for the conditions specified. for a comparison of rbsoa results in several types of circuits (see application note an951). 6. design samples e transistor parameters tend to vary much more from wafer lot to wafer lot, over long periods of time, than from one device to the next in the same wafer lot. for design evaluation it is advisable to use transistors from several different date codes. 7. baker clamps e many unanticipated pitfalls can be avoided by using baker clamps. mur105 and mur1100 diodes are recommended for base drives less than 1 amp. similarly, mur405 and mur4100 types are wellsuited for higher drive requirements (see article reprint ar131).
mjw16010a http://onsemi.com 11 package dimensions case 340k01 issue c to247 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. r p a k v f d g u l e 0.25 (0.010) m tb m 0.25 (0.010) m yq s j h c 4 123 t b y q dim min max min max inches millimeters a 19.7 20.3 0.776 0.799 b 15.3 15.9 0.602 0.626 c 4.7 5.3 0.185 0.209 d 1.0 1.4 0.039 0.055 e 1.27 ref 0.050 ref f 2.0 2.4 0.079 0.094 g 5.5 bsc 0.216 bsc h 2.2 2.6 0.087 0.102 j 0.4 0.8 0.016 0.031 k 14.2 14.8 0.559 0.583 l 5.5 nom 0.217 nom p 3.7 4.3 0.146 0.169 q 3.55 3.65 0.140 0.144 r 5.0 nom 0.197 nom u 5.5 bsc 0.217 bsc v 3.0 3.4 0.118 0.134
mjw16010a http://onsemi.com 12 on semiconductor and are trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to make changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scill c data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthori zed use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. publication ordering information central/south america: spanish phone : 3033087143 (monfri 8:00am to 5:00pm mst) email : onlitspanish@hibbertco.com tollfree from mexico: dial 018002882872 for access then dial 8662979322 asia/pacific : ldc for on semiconductor asia support phone : 13036752121 (tuefri 9:00am to 1:00pm, hong kong time) toll free from hong kong & singapore: 00180044223781 email : onlitasia@hibbertco.com japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. mjw16010a/d switchmode is a trademark of semiconductor components industries, llc. north america literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com fax response line: 3036752167 or 8003443810 toll free usa/canada n. american technical support : 8002829855 toll free usa/canada europe: ldc for on semiconductor european support german phone : (+1) 3033087140 (monfri 2:30pm to 7:00pm cet) email : onlitgerman@hibbertco.com french phone : (+1) 3033087141 (monfri 2:00pm to 7:00pm cet) email : onlitfrench@hibbertco.com english phone : (+1) 3033087142 (monfri 12:00pm to 5:00pm gmt) email : onlit@hibbertco.com european tollfree access*: 0080044223781 *available from germany, france, italy, uk, ireland


▲Up To Search▲   

 
Price & Availability of MJW16010A-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X